

MATH 101 – Engineering Mathematics I										
Course Code	Course Code Course Name Semester									
MATH 101	Engin	eering Mathematics I	Fall 🛛 Spring	Fall ⊠ Spring □ Summer □						
		Credit	ECTS							
Theory		Practice	Lab							

Course Details	
Department	
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face 🛛 Online 🗆 Hybrid 🗆
Course Type	Compulsory 🛛 Elective 🗆
Lecturer (s)	
Course Objectives	The basic objective of Calculus is to relate small-scale (differential) quantities to large-scale (integrated) quantities. This is accomplished by means of the Fundamental Theorem of Calculus. Students should demonstrate an understanding of the integral as a cumulative sum, of the derivative as a rate of change, and of the inverse relationship between integration and differentiation.
Course Content	Functionsi Limit and Continuity, Derivative, Applications of Derivative, Integral, Applications of Integral, Transcendental Functions
Course Method/ Techniques	Lecture $oxtimes$ Question & Answer $oxtimes$ Presentation \Box Discussion \Box
Prerequisites/ Corequisites	The prerequisites are high school algebra and trigonometry

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No2 / 5

Work Placement(s)

Textbook/References/Materials

Textbook(s): G.B Thomas, J. Hass, M.D.Weir, C. Heil, *Thomas' Calculus*, 14th Edition, (Pearson Global Edition)

R.A. Adams, Calculus: A complete course 8-th revised ed., Prentice Hall, 2013.

J. Stewart, Calculus, Metric Version, Eighth Edition, 2016, Cengage Learning

References:

• Materials:

Course Category									
Mathematics and Basic Sciences	\boxtimes	Education							
Engineering	\boxtimes	Science	\boxtimes						
Engineering Design	\boxtimes	Health	\boxtimes						
Social Sciences		Profession							

Weekly Schedule									
No	Topics	Materials/Notes							
1	Functions of a Single Variable								
2	Limit and Continuity								
3	Limit and Continuity								
4	Derivatives								
5	Derivatives								
6	Derivatives and Applications								
7	Derivatives and Applications								
8	Midterm Exam								
9	Integration								
10	Integration								
11	Integration and Applications								
12	Integration and Applications								
13	Transcendental Functions								
14	Integration techniques								
15	L'Hopital's Rule								
16	Final Exam								

Assessment Methods and Criteria									
In-term studies	Quantity	Percentage							
Attendance	-	-							
Lab	-	-							
Practice	-	-							
Fieldwork	-	-							

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No3 / 5

Course-specific internship	-	-
Quiz/Studio/Criticize	-	-
Homework	-	-
Presentation / Seminar	-	-
Project	-	-
Report	-	-
Seminar	-	-
Midterm Exam	1	40
Final Exam	1	60
	Total	100%
Contribution of Midterm Studies to Success Grade	1	40
Contribution of End of Semester Studies to Success Grade	1	60
	Total	100%

ECTS Allocated Based on Student Workload									
Activities	Quantity	Duration (Hrs)	Total Workload						
Course Hours	16	4	64						
Lab	-	-	-						
Practice	-	-	-						
Fieldwork	-	-	-						
Course-specific Work Placement	-	-	-						
Out-of-class study time	16	3	48						
Quiz/Studio/Criticize	-	-	-						
Homework	-	-	-						
Presentation / Seminar	-	-	-						
Project	-	-	-						
Report	-	-	-						
Midterm Exam and Preparation for Midterm	1	15	15						
Final Exam and Preparation for Final Exam	1	20							
Total Workload	147								
Total Workload / 25									
ECTS Credit									

Course Lea	Course Learning Outcomes								
No	Outcome								
L1	Use both the definition of derivative as a limit and the rules of differentiation to differentiate functions.								
L2	Sketch the graph of a function using asymptotes, critical points, and the derivative test for increasing/decreasing and concavity properties								
L3	Set up max/min problems and use differentiation to solve them.								
L4	Set up related rates problems and use differentiation to solve them.								
L5	Evaluate integrals by using the Fundamental Theorem of Calculus								

Apply integration to compute areas and volumes by slicing, volumes of revolution, arclength, and surface areas of revolution.
Evaluate integrals using techniques of integration, such as substitution, inverse substitution, partial fractions and integration by parts.
Set up and solve first order differential equations using separation of variables.
Use L'Hôpital's rule.

Contribution of Course Learning Outcomes to Program Competencies/Outcomes													
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant													
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Tot							Total						
L1													
L2													
L3													
L4													
L5													
Total													

i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.

ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.

iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.

iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.

v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.

vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.

vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.

viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.

ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.

x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.

xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.